skip to main content


Search for: All records

Creators/Authors contains: "Benson, Austin R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Here we assess the applicability of graph neural networks (GNNs) for predicting the grain-scale elastic response of polycrystalline metallic alloys. Using GNN surrogate models, grain-averaged stresses during uniaxial elastic tension in low solvus high-refractory (LSHR) Ni Superalloy and Ti 7 wt%Al (Ti-7Al) are predicted as example face-centered cubic and hexagonal closed packed alloys, respectively. A transfer learning approach is taken in which GNN surrogate models are trained using crystal elasticity finite element method (CEFEM) simulations and then the trained surrogate models are used to predict the mechanical response of microstructures measured using high-energy X-ray diffraction microscopy (HEDM). The performance of using various microstructural and micromechanical descriptors for input nodal features to the GNNs is explored through comparisons to traditional mean-field theory predictions, reserved full-field CEFEM data, and measured far-field HEDM data. The effects of elastic anisotropy on GNN model performance and outlooks for the extension of the framework are discussed.

     
    more » « less
  2. null (Ed.)
  3. Modern graph or network datasets often contain rich structure that goes beyond simple pairwise connections between nodes. This calls for complex representations that can capture, for instance, edges of different types as well as so-called “higher-order interactions” that involve more than two nodes at a time. However, we have fewer rigorous methods that can provide insight from such representations. Here, we develop a computational framework for the problem of clustering hypergraphs with categorical edge labels — or different interaction types — where clusters corresponds to groups of nodes that frequently participate in the same type of interaction. Our methodology is based on a combinatorial objective function that is related to correlation clustering on graphs but enables the design of much more efficient algorithms that also seamlessly generalize to hypergraphs. When there are only two label types, our objective can be optimized in polynomial time, using an algorithm based on minimum cuts. Minimizing our objective becomes NP-hard with more than two label types, but we develop fast approximation algorithms based on linear programming relaxations that have theoretical cluster quality guarantees. We demonstrate the efficacy of our algorithms and the scope of the model through problems in edge-label community detection, clustering with temporal data, and exploratory data analysis. 
    more » « less
  4. Pattern counting in graphs is a fundamental primitive for many network analysis tasks, and there are several methods for scaling subgraph counting to large graphs. Many real-world networks have a notion of strength of connection between nodes, which is often modeled by a weighted graph, but existing scalable algorithms for pattern mining are designed for unweighted graphs. Here, we develop deterministic and random sampling algorithms that enable the fast discovery of the 3-cliques (triangles) of largest weight, as measured by the generalized mean of the triangle’s edge weights. For example, one of our proposed algorithms can find the top-1000 weighted triangles of a weighted graph with billions of edges in thirty seconds on a commodity server, which is orders of magnitude faster than existing “fast” enumeration schemes. Our methods open the door towards scalable pattern mining in weighted graphs. 
    more » « less